Robust Edge Aware Descriptor for Image Matching
نویسندگان
چکیده
This paper presents a method called Robust Edge Aware Descriptor (READ) to compute local gradient information. The proposed method measures the similarity of the underlying structure to an edge using the 1D Fourier transform on a set of points located on a circle around a pixel. It is shown that the magnitude and the phase of READ can well represent the magnitude and orientation of the local gradients and present robustness to imaging effects and artifacts. In addition, the proposed method can be efficiently implemented by kernels. Next, we define a robust region descriptor for image matching using the READ gradient operator. The presented descriptor uses a novel approach to define support regions by rotation and anisotropical scaling of the original regions. The experimental results on the Oxford dataset and on additional datasets with more challenging imaging effects such as motion blur and non-uniform illumination changes show the superiority and robustness of the proposed descriptor to the state-of-the-art descriptors.
منابع مشابه
Neighborhood matrix: A new idea in matching of two dimensional gel images
Automated data analysis and pattern recognition techniques are the requirements of biological and proteomicsresearch studies. The analysis of proteins consists of some stages among which the analysis of two dimensionalelectrophoresis (2-DE) images is crucial. The aim of image capturing is to generate a Photostat that can be used infuture works such as image comparison. The researchers introduce...
متن کاملDPML-Risk: An Efficient Algorithm for Image Registration
Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...
متن کاملNew Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملA Robust Descriptor Based on Spatial and Frequency Structural Information for Visible and Thermal Infrared Image Matching
Due to the differences of imaging principles, image matching between visible and thermal infrared images still exist new challenges and difficulties. Inspired by the complementary spatial and frequency information of geometric structural features, a robust descriptor is proposed for visible and thermal infrared images matching. We first divide two different spatial regions to the region around ...
متن کاملOriented Edge-Based Feature Descriptor for Multi-Sensor Image Alignment and Enhancement
In this paper, we present an efficient image alignment and enhancement method for multi-sensor images. The shape of the object captured in a multisensor images can be determined by comparing variability of contrast using corresponding edges across multi-sensor image. Using this cue, we construct a robust feature descriptor based on the magnitudes of the oriented edges. Our proposed method enabl...
متن کامل